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ERGODIC CONTROL OF SWITCHING DIFFUSIONS*

MRINAL K. GHOSHT, ARISTOTLE ARAPOSTATHISI AND STEVEN I. MARCUSS

January 30, 1996

ABSTRACT. We study the ergodic control problem of switching diffusions representing a typical
hybrid system that arises in numerous applications such as fault-tolerant control systems,
flexible manufacturing systems, etc. Under fairly general conditions, we establish the existence
of a stable, nonrandomized Markov policy which almost surely minimizes the pathwise long-run
average cost. We then study the corresponding Hamilton-Jacobi-Bellman (HJB) equation and
establish the existence of a unique solution in a certain class. Using this, we characterize the
optimal policy as a minimizing selector of the Hamiltonian associated with the HJB equations.
As an example we apply the results to a failure prone manufacturing system and obtain closed
form solutions for the optimal policy.

1. Introduction. We address the problem of controlling switching diffusions by contin-
ually monitoring the continuous and discrete component of the state. The objective is to
minimize, almost surely, the pathwise long-run average (ergodic) cost over all admissible
policies. A controlled switching diffusion is a typical example of a hybrid system which
arises in numerous applications of systems with multiple modes or failure modes, such as
fault tolerant control systems, multiple target tracking, flexible manufacturing systems etc.
[13], [14], [22]. The state of the system at time ¢ is given by a pair (X(t),S(¢)) € R* x S,
§ ={1,2,...,N}. The continuous component X (¢) is governed by a “controlled diffusion
process” with a drift vector which depends on the discrete component S(¢). Thus, X (t)
switches from one diffusion path to another as the discrete component S(¢) jumps from one
state to another. On the other hand, the discrete component S(t) is a “controlled Markov
chain” with a transition matrix depending on the continuous component. The evolution of
the process (X (t), S(¢)) is governed by the following equations:

(1.1) dX(t) = b(X(t),S(t),u(t))dt + o (X (t), S(t))aW (t),
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(12) P(S(t+6t) =78t =1,X(s),S(s),s <t) = A (X(t), u(t))6t + 0(6t), i # j,

for t > 0, X(0) = Xy, 5(0) = So, where b, o, A are suitable functions, \;; > 0 for ¢ # j,
Z;.Vzl Aij = 0, W(-) is a standard Brownian motion and u(-) is a non-anticipative control
process (admissible policy). The latter is called a Markov policy if u(t) = v(X(t), S(t))
for a suitable function v. Our goal is to minimize almost surely (a.s.) over all admissible
policies the functional

T—oo

T
(1.3) limsup—jlq/o c(X(t),S(t), u(t))dt,

where c¢ is the running-cost function. Note that in (1.3) there is no expectation; we are
minimizing the limiting pathwise average cost. Such a criterion is very important in practical
applications since we often deal with a single realization. Under certain conditions, we show
that there exists a Markov policy v* and constant p* such that

. 1 T - * *
%@w?/() (X (1), 5(8), v (X (), SH))dt = p*,  as.

and for any other admissible policy v(-)

T
l%igf% A c(X (1), S(t),v(t))dt > p*, aus.
This establishes that v* is optimal in a much stronger sense; viz., the most “pessimistic”
average cost under v* is no worse than the most “optimistic” average cost under any other
admissible policy. Also, under the conditions assumed in this paper, the optimal pathwise
average cost coincides with the optimal expected average cost. So we do not distinguish
between these two criteria.

Our paper is organized as follows. In Section 2 we present and analyze a motivating exam-
ple, while in Section 3 we introduce a concise mathematical model of the switching diffusion.
Section 4 is devoted to the study of recurrence and ergodicity of switching diffusions. The
existence of an optimal policy is established in Section 5. The Hamilton-Jacobi-Bellman
(HJB) equations are studied in Section 6. Conclusions are in Section 7.

2. A Motivating Example. The failure prone manufacturing system presented in [1],
(5], [14], is a very good example of the class of systems studied in this paper. This section
is devoted to the analysis of this manufacturing model. Results from subsequent sections
will be used in this example and thus the reader will have the opportunity to glimpse at
some of the key developments of the paper.

Suppose there is one machine producing a single commodity. We assume that the demand
rate is a constant d > 0. Let the machine state S(¢) take values in {0,1}, S(¢) = 0 or 1,
according as the machine is down or functional. We model S(t) as a continuous time Markov

chain with generator
Ao Ao
/\1 -1 ’



where Ao and \; are positive constants corresponding to the infinitesimal rates of repair
and failure respectively. The inventory X (¢) is governed by the Ito equation

(2.1) dX (t) = (u(t) — d)dt + odW (t),

where o > 0, u(t) is the production rate and W(t) is a one-dimensional Wiener process
independent of S(t). The last term in (2.1) can be interpreted as “sales return”. “inven-
tory spoilage”, “sudden demand fluctuations”, etc. A negative value of X (t) represents
backlogged demand. The production rate is constrained by

u(t) € {{0}, ?f5<t>
[0,7], if S(¢)

0
1.

Let ¢ : R — Ry be the cost function which is assumed to be convex and Lipschitz. Also
c(z) = g(|z]) for some increasing function g : R, — Ry. Thus, c satisfies (5.3), a required
condition for the results we apply to hold. We show later in this section that a certain
hedging-point policy is stable. Therefore, by the results of Section 5 there exists an a.s.
optimal nonrandomized Markov policy with respect to the cost criterion

1 (T
lim sup T / c(X(¢))dt.
0

T—00

The HIB equations in this case are

2V"(x,0) - dV'(z,0) =X Ao ] [ V(z,0)
(2.2) 2 .
V@ 0+ min {(u-dVie, ) [ Mo <V(@"v 1>)

(o)

The results of Section 6 ensure existence of a C? solution (V, p*) of (2.2), where p* is the
optimal cost. Using the convexity of ¢(-), it can be shown that V(-,4) is convex for each i.
Hence, there exists an z* such that

V'(z,1)
V'(z,1)

IA

0, for z < z*
(2.3) 0

v

for x > z*.

It follows, from (2.3), that the value of u which minimizes (v — d)V’(z, 1) is

r, ifz<az*
U =
0, ifxz>zx*.

Since V'(z*,1) = 0, any u € [0,7] minimizes (u — d)V’(z*,1). Therefore, in view of The-
orem 6.2, the action u € [0,7] can be chosen arbitrarily at z = z*. To be specific, we let



u(z*) = d, i.e., we produce at the level that meets the demand exactly. Thus, the following
stable, nonrandomized Markov policy is optimal

r, ifzx<az*
(2.4) v*(z,0) =0, v (z,1) =< d, ifz=2z*

0, ifz>z".
Note that the stability of the policy (2.4) follows from Theorem 6.3 provided that the set of
stable, nonrandomized Markov policies is nonempty. We show next that the zero-inventory
policy v given by
2.5) @0 =0, o@n={" "%

. v(z,0) =0, v(z,1) =
0, ifz>0

is stable if and only if

(r—d) d

(2.6) N > X

The condition (2.6) is in accord with intuition. Note that Ag ! and A[! are the mean
sojourn times of the chain in states 0 and 1 respectively. In state 0 the mean inventory
depletes at a rate d while in state 1 it builds up at a rate (r—d). Thus, if (2.6) is satisfied, one
would expect the zero-inventory policy to stabilize the system. Our analysis confirms this
intuition. We first show that under v the process (X(-),S(:)) has an invariant probability
measure 7, with a strictly positive density. In view of Lemma 4.1, it then follows from the
ergodic theory of Markov processes [24, Chap. 1] that (X (-), S(-)) is positive recurrent, or
equivalently that v is stable.

By Lemma 5.2, the density ¢ of the invariant probability measure n, can be obtained by
solving the adjoint system

(2.7) (L*) ez, i) =0,
subject to
28) o) >0 3 [eide=1,
i{0,1} 'R
where L is the differential generator defined in (3.6)—(3.8). Define
I 2)\0 N 2)\1 ~ 2d - 2r
/\0:=?, 122?;2—, d:; and T::;E'

Then (2.7) is equivalent to

90”('7370) + CZSOI(I”:O) - 5‘0‘:0(:1370) + ;\1(,0(.’13, 1) =0
(2.9a) ~ B B for z > 0,
(P/,(iv, 1) + d(p/(.’IJ, 1) - )‘1@(1" 1) + /\O(P(CU, O) =0

(p”(l’,O) + (ﬂp'(:}:,()) - :\090(33’0) + 5‘190(1" 1) =0
(2.9b) - - - for x < 0.
(/3"(27, 1) - (F - d)(P,(l', 1) - /\1<P($» 1) + )‘0(10(‘%,0) =0



A solution of (2.9), subject to the constraint (2.8), exists if and only if (2.6) holds and
takes the form:

X : —X1
a1 (~ ) e %1% 4 a4 ( _ ) e %2% for x > 0,
<p(ac,0) Ao AL
(210)  (z)= -

, . B
ol 1) as < ) > €% + ay ( . > en®, forz <0,
—(s3) ¥(s4)

where ¥(s) = s2 +ds—Xg, 81 =4d, 85 = %Z+ % [Jz +4(5\0 +/~\1)] 1/2, and s3, s4 are the positive
roots of the polynomial

83 — (F — 2d)s* — [(F — d)d + Ao + Mi]s + [(F — d)ho — dM1)]

ordered by 0 < s3 < s4. Also, the coefficients {a1, as, az,as}, are given by:

a 1{(54—83)82+S4+82 83+82}
1= F{—=—= = — =
A Ao+ A1 sz +d sa+d
1 (s4—53)89
Qy = ——=——=—
A X+ M
1 84+ 52
2.11 ag = — =
(211) ’ A sg+d
a _ lsstso
* AS4+d~

A= (34—53)(32—J)+Z\0+5\1{s4+32_33+52}

d d 83 Sq

Note that if ¢4+ (-) denotes the density of the invariant measure corresponding to a hedging-
point policy as in (2.4), then

Pz-(z) = p(z —27).

Given a convex cost function, the average cost p(x*) corresponding to such a policy can be
readily computed and is a convex function of the threshold value z*.

In [5], Bielecki and Kumar have studied the mean square stability of the piecewise de-
terministic system, i.e., (2.1) with ¢ = 0. They have shown that under (2.6) the policy
(2.5) is mean square stable, and have computed the optimal threshold value z* in (2.4).
These results can be easily reproduced here by computing the limiting value of the invari-
ant distribution as o — 0, which we do next. The roots ss, s3 and s4 have the following
asymptotic dependence on o:

2d (r—d)Xo —dX\;

(212)  s= 5O, s=Tp oL 00", s= 3("_0;_@

+0(1).



Thus, using (2.11), we obtain

d[(’f‘ - d))\() - d/\l]

ai,dg = T()\Q-i—Al)Q +O(g2)
o2 [(r—d)ho — dNy] )
(2.13) R v v + O(o*)
o? d[(r — d)ro — d)i]
T s ver WM
Let
o (’l" — d)/\() — d)\l
WO T — )

and 6,(x) denote the Dirac measure centered at 2. Using (2.12) and (2.13), we can show
that as 0 — 0, @z (-) converges weakly to a distribution with “density” %,.(-), given by

fffl—eao(” z") for x < x*, i =0,
— , d dA —z* -
Pee (@) = | 3035700 (2) + oipte e forzs<ati=1,
0, for z > x*.

Using a cost as in [5] of the form

ct +c” ct —¢”
(2.14) c(z) = |z| + 5

2 T

with ¢t and ¢ positive constants, the average cost corresponding to the policy in (2.4)
takes the form:

) = g ()P, (z,1) dx
o ;l /_ _cloyp
oa ctrig rA(ct +¢7)
(7’ — d)(/\o -+ /\1)&0 (r — d)(/\o =+ /\1)0&0

—aox”

In this manner, the results in [5] are reproduced exactly. One advantage of our approach
is that the class of admissible policies does not have to be restricted as is done in [5], in
order to guarantee the existence of solutions. With our method, optimality is obtained with
respect to the class of all non-anticipative policies. Furthermore, our analysis shows that
the stability of the zero-inventory policy is retained under additive noise in (2.1). Let us
also note that conditions for the optimality of the zero-inventory policy under additive noise
can be readily obtained for the cost in (2.14) using the density in (2.10).

3. The Mathematical Model. We first exhibit that the switching diffusion (1.1), (1.2)
can be constructed on a given probability space. Our presentation follows [13], [14]; we



repeat it here for the sake of clarity and completeness. Let U be a compact metric space,
§:={1,2,...,N}, and

g
Xij :Rx U — R, i,jES,
Y

Xij >0, for i # j, injzo, for any i € S.
JES

We also define the matrix A : R? x 7 — RNXN by

0, i=7.

sl = {

We make the following assumptions which will be in effect throughout the paper.
Assumption 3.1.

(i) The functions b(x, k,u), 0i;(z, k) and Ni;(z,u) are continuous and Lipschitz in z,
uniformly with respect to u, with a Lipschitz constant vo. Let mo denote the least
upper bound of [|6(0, &, )||co, 10:5(0, k)| and ||Ai;(0,)]co-

(1) 04;(-,-) s uniformly elliptic, i.e., there exists a constant m > 0 such that
a(- k)o' (-, k) > ml.

(ili) The matriz A(z,u) is irreducible for all (z,u) € R? x U.

For a Polish space Y, B(Y) denotes its Borel o-field and P(Y') the space of probability
measures endowed with the Prohorov topology, i.e., the topology of weak convergence. Let
IM(Y) be the set of all nonnegative, integer-valued, o-finite measures on B(Y'). Let M, (V)
be the smallest o-field on 9M(Y) with respect to which all the maps from M(Y) to N {co}
of the form p +— pu(B) with B € B(Y) are measurable. (YY) is assumed to be endowed
with this measurability structure. Let V = P(U) and b = [bl, ceey bd]/ ‘REx SxV — RY
be defined by

(3.1) m@3m=zf¢”mmmy

Similarly, for 4,5 € S and v € V, A;; is defined as

(3.2) Aij () = /Uxij(-,u)v(du).

Fori,j €S,z € R%and v € V, let A;;(z, v) be consecutive (with respect to the lexicographic
ordering on S X S), left closed, right open intervals of the real line, each having length
\i;(z,v). Define a function A : R x § x V x R — R by

i ifze Az,
(3.3) h(m,i,v,z):{J 1, W2 5(z,v)

0, otherwise.



Let (X (t), S(t)) be the (R? x §)-valued, controlled, switching diffusion process given by the
following stochastic differential equations.

dX(t)

Il

b(X (1), S(t),v(t)) dt + o (X (¢), S(t))dW (¢)
(3.4)
ds(t)

i

/ R(X(8), (=), v(t), 2) p(dt, dz)
R
for t > 0 with X (0) = Xo, S(0) = Sp, where
(i) Xo is a prescribed R%-valued random variable.
(if) So is a prescribed S-valued random variable.
(iii) W(-) = [Wi(),..., Wd(-)]/ is a d-dimensional standard Wiener process.
iv) p(dt,dz) is an M(R, x R)-valued Poisson random measure with intensity dt x m(dz),
where m is the Lebesgue measure on R.
(v) p(--), W(-), Xo and Sy are independent.
(vi) v(:) is a V-valued process with measurable sample paths satisfying the non-
anticipativity property that the o-fields §} and Egﬁfo) given by

8t = ofu(s),s < t},
iy = o{W(s) = W(t),p(4,B) : A€ B([s,00)), B € B(R),s > t}.
are independent, for each t € R.

A process v(-) satisfying (vi) is called an admissible (control) policy. If v(-) is a Dirac
measure, i.e., v(-) = 0y(.), where u(-) is U-valued, then it is called an admissible nonran-
domized policy. An admissible policy is called feedback if v(-) is progressively measurable
with respect to the natural filtration §; = {X(s), S(s), s < t}.

A particular subclass of feedback policies is of special interest. A feedback policy v(:)
is called a (homogeneous) Markov policy if v(t) = #(X(t),S(t)) for a measurable map
7 : R x 8 — V. With an abuse in notation the map © itself is called a Markov policy.
Let IT, ITps and I, p denote the sets of all admissible, Markov and nonrandomized Markov
policies respectively.

It (W(-),p(-,), Xo, So, v(-)) satisfying (i)—(vi) above are given on a prescribed probability
space (2, &, P), then under Assumption 3.1, (3.4) admits an a.s. unique strong solution [17,
Chap. 3], and X(-) € C(R4;R%), S(-) € D(Ry;S), where D(R,;S) is the space of right
continuous functions on R with left limits taking values in S. However, if v(-) is a feedback
policy, then there exists a measurable map

f:Ry x C(RL;RY) x D(Ry;S) — V

such that for each ¢ > 0, v(t) = f(¢,X(:), S(-)) and is progressively measurable with respect
to {§¢}. Thus, v(-) cannot be specified a priori in (3.4). Instead, one has to replace v(t) by
f(t,X(-),5()), and (3.4) takes the form

dX(¢)

Il

b(X(t),S(t), £(£, X (), 8()))dt + o (X (t), S(t))dW (¢)
(3.5)
dS(t)

/R B(X(2), S(t-), F(t, X (), 5()), 2)p(dt d2)



for t > 0 with X (0) = Xy, S(0) = Sy. In general, (3.5) does not even admit a weak solution.
However, if the feedback policy is Markov, then the existence of a unique strong solution
can be established.

If IC(R?) is a vector space of real functions over R?, we adopt the notation K(R% x S)
to indicate the space (K(Rd))N, endowed with the product topology. For example,

LP(RY x ) i= {f REx S R : (i) € LP(RY), for all i € S}

and similarly we define C*(R% x S), Wk?(R® x §), ete. For f € W2P(R*x 8) and u € U,

Loc
we write
(36) L*f(x, k) = LY f (k) + Y Mg (@, w) f(z, )
JES
where
1< 2 . G

(3.7) Ly =3 Z oie(2, K)ol k) 5= oz, T2 bj(:v,k,u)éx—j

1,9,6=1 7j=1
and more generally, for v € V
(3.8) LY f(z, k) = / L¥f(x, k)v(du) .

U

The following result is proved in [14].

Theorem 3.1. Under a Markov policy v, (3.4) admits an a.s. unique strong solution such
that (X (-),S(:)) is a strong Feller process with differential generator L®.

A Markov policy v is called stable if the corresponding process (X(-),S(-)} is positive
recurrent. In this case, the process has a unique invariant probability measure, denoted by
n, € P(R? x 8). The uniqueness of 7, is guaranteed by Assumption 3.1. We assume that
the set of stable Markov policies is nonempty.

The Optimization Problem. Let ¢ : RY x S x U — R, be the cost function. The
following assumption on the cost, € will be in effect throughout the paper.

Assumption 3.2. For eachi € S, ¢(-,1,-) is continuous.

We define c: R4 x S x V — R, by
(3.9) c(z,i,v) = / (x, 1, u)v(du) .
U

Let v(-) be an admissible policy and (X(-),S(-)) the corresponding process. The pathwise
(long-run) average cost incurred under v(-) is

T
(3.10) limsup%/0 c(X (1), S(t),v(t))dt.

T oo



We wish to a.s. minimize (3.10) over all admissible policies. Our goal is to establish the
existence of a stable Markov policy which is a.s. optimal. In general, this is not the case, as
the following simple counterexample shows [6]. Let &(z,4) = exp(—||z||?). Then for every
stable Markov policy the average cost is positive a.s., while we can find an unstable Markov
policy for which the average cost is a.s. zero, making it an optimal policy. We want to
rule out this possibility, as stability is a very desirable property. We carry out our study
under two alternate sets of hypotheses: (a) a condition on the cost which penalizes unstable
behavior, (b) a blanket stability condition which implies that all Markov policies are stable.
We describe these conditions in Section 6.

4. Recurrence, Ergodicity and Harmonic Functions of Switching Diffusions. Due
to the interaction between the continuous and discrete components, the study of recurrence
and ergodicity of switching diffusions is quite involved. Let v be a Markov policy which will
be fixed throughout this section unless explicitly stated otherwise. Let PV : Ry x R x § —
P(R? x S) denote the transition function of the corresponding process (X(-),S(-)). Also
Py, and E7 ; denote the probability measure and the expectation operator, respectively, on
the canonical space, of the process (X(-),S(-)) starting at (z,i) € R? x S. The following
result plays a crucial role in recurrence.

Lemma 4.1. For any (t,z,i) € Ry x R? x S, the support of P¥(t,z,4;-) is R4 x S.

Proof. For each i € S, let 7; denote the sojourn time of S(t) in state 1. Then

Py (n>t) = EY, [exp( /0 gy (X (s),v(X (s), S(s)))ds)] .

Let A};(s) == Ayj (X(s),v(X(s),5(s))), Ia,;(s) == I{X(s) € A,S(s) = j}, and P be the
transition function of the diffusion corresponding to LY, i.e., the diffusion with no switching
and S(t) = 4. For A€ B(R?), 4,5 € S and t > 0,

Pv(t,:l,‘,’i,A X {j}) = E:J [IA’j(t) ‘ Ty > t]PIU’l(Tz > t) +E;3],z [IA,j(t)I{Ti < t}]

t
= 2, oo [ (o) ds) | P et
0
t

S
w82 [ e el [ A
0 0

/}Rd Pi”(s,:c,dy)z/\fk(s)P”(t —-s,y,k, A X {j})}

ki

= E?, {exp(/ot Asi(s) ds)] Py (t , A)és;
+ 3 [ o ool [ )

k#i

/ PY(s,z,dy)P"(t —s,y,k, Ax {j})ds.
R

10



Define the transition matrix II" by
[M¥(t,z, A)liy = P¥(t, 2,9, A x {4}).
Then we can suitably define the matrix measures
I'Y, Ty : R x R — (P(RY)
with T'Y(¢,z, A) positive, diagonal and I'j(¢,z, A) non-negative, irreducible (by Assump-
tion 3.1 (iii)), for all (t,z,A) € Ry x R? x B(R?), provided A has positive Lebesgue
measure, so as to write (4.1) in the form:

t
(4.2) T°(t, 2, A) = TV(t, 3, 4) + / / TY(s, 2, dy)TI¥ (¢ - 5,9, A)ds.
o JRd
The desired result follows from (4.2), using the irreducibility of I'j(¢,2z, 4). 0O

)NXN

Let 7i;, 7; be the stopping times defined as follows:

(4.3) 7y =inf{t >0 : S(t) =1 and S(t') # 4, for some 0 < ¢’ < t}
(4.4) m;=inf{¢t>0: S(t) =4}

Let D C R? be a bounded open set and J a subset of S. Define

(4.5) tp,y =inf{t >0 : (X(¢),S(t)) ¢ Dx J}

(4.6) p=inf{t >0 : X(t) ¢ D}.

Using (4.2) and well known arguments in Markov processes [12, Vol. I, p. 111] the following
results can be proved.

Lemma 4.2. If T is a stopping time of the form 7y, 7j, Tp,y or Tp, as defined in (4.3)-
(4.6), then, for each compact set K C R9,

sup  Ep;[r] <oo.
velly, ze K

It is well known that harmonic functions play an important role in the study of recurrence
and ergodicity of Markov processes [3]. Therefore, we now turn to the analysis of some
properties of the harmonic functions of the process (X(-),S(-)) under the Markov policy v.
The function f is called L¥-harmonic in D if it is bounded on compact subsets of D, and
foralz € D,i €S,

(4.7) fla,9) = B3 i f (X (1v,9), 8(1v,4)),
for every neighborhood V of z having compact closure V in D and every subset J C S
containing 7. It is clear that if f is L”-harmonic then

(4.8) flz,1) = B ;f(X(1v), S(1v)).
On the other hand, if (4.8) holds then by conditioning on §,,, , we obtain

Fa,i) = B[ B [£(X(rv), S(v)) | G, ]|

=E; [Egc,w, f(X(rv = 1v,9), S(1v — TV,J))”

= B, [F(X(v.0), 8(v.0))] s
concluding that (4.7) and (4.8) are actually equivalent.

Sry. g
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Lemma 4.3. Let D C R? be open. Then,

(i) Every LY-harmonic function in D is continuous in D.
(i) If Lf =0 in D and f € W2P(D x §), then f is LV-harmonic. Conversely, if f is
LV-harmonic and f € WoP(D x S), then LVf = 0 in D.

(ili) (Mazimum Principle) Let D be connected and f > 0 and LY-harmonic in D. Then
[ is either strictly positive in D x § or identically zero.

Proof. The proof of (i) is standard [3], [12, Vol. II, Chap. 13| and (ii) can easily be proved
using Ito’s generalized formula. Let 29 € D, ip € § and 7 > 0 be such that f(zg,i9) = 0
and B(zo,7) C D, where B(zo,7) = {z € R? : ||z — zo]| < 7}. Then

0= f(zo,%0) = Z/ FY, )Py i (X (TB(20,r)) € Ay, S(TB(20,r)) = 7))
; 8B(xo,r)
JES
Then, by Lemma 4.1, we can show using standard arguments [16, Chap. 6] that the support
of the measure Py (X(TB(ZO,T)) € dy, S(TB(zo,r)) = j) is 0B(zo,7) x S. Hence,

fly,5) =0, for all y € 0B(xg,7), j € S.

It follows that the set {y : fly,7) =0, j€ S} is open in D and since D is connected the
result follows. [

We next state Harnack’s inequality for LY-harmonic functions, which extends a very
important result in partial differential equations. This inequality plays a crucial role in
proving the existence of a solution to the HJB equation via the vanishing discount method,
as is done in Section 6. As far as we know, this result is not known in the literature on
partial differential equations. The detailed proof of Harnack’s inequality is quite elaborate
and can be found in the Appendix. The proof follows the method introduced for diffusions
by Krylov and Safonov [18], for deriving estimates for the oscillation of a harmonic function.
For the system of coupled elliptic operators characterizing switching diffusions considerable
complications arise in trying to follow the same methodology, due to the vector-valued
nature of the LV-harmonic functions. A crucial step in the proof is ‘coupling’ together the
oscillations of the distinct components of the harmonic function. The irreducibility of the
matrix A is essential in accomplishing this task.

Theorem 4.1 (Harnack’s Inequality). Let 2 C R? be a bounded domain and K C §2 a
closed set. There exists a constant C > 0, depending only on (2, K, the dimension d, N,
the bounds m, mg and the Lipschitz constant o introduced in Assumption 3.1, such that for
any nonnegative function f € Wezo’f(ﬂ x 8), p € [1,00), satisfying L'f =0 in 2 x S, for
some Markov policy v,

fl,0) <Cfly,5), VayeK, VijeSs.

We now discuss the recurrence properties of switching diffusions. Qur treatment closely

follows [3], therefore we skip the details in several places. A point (z,7) € R? x S is said to
be recurrent if given any € > 0,

(4.16) P} (X (tn) € B(z,€), S(tn) =1, for a sequence t, T oo0) = 1.

12



A point (z,1) is transient if
(4.17) P2 (I X(#)] = oo, ast — o0) = 1.

If all points of the switching diffusion are recurrent, then it is called recurrent. A transient
switching diffusion is similarly defined. Note that the discrete component of the process
has been ignored in the definition (4.17). The reason for doing so is that, in view of
Assumption 3.1 (iii), we can show that provided that the continuous component visits a
bounded set infinitely often with probability 1, then the discrete component is recurrent.
More generally, a switching diffusion exhibits a dichotomy in that it is either recurrent or
transient as we will later show.

Lemma 4.4. The following statements are equivalent.

(i) The switching diffusion is recurrent;
(ii) PY(X(t) € D, S(t) = j, for somet > 0) =1, for any open set D C R? and any
JjEeS.

Proof. We prove (i) — (ii) (the converse is easier). We distinguish two cases:

Case 1. Let z € D, i # j. Let B = B(z,¢) and B; be bounded open sets such that B C B
and B; C D. Let

n =inf{t >0 : X(t) € 0B},

and inductively, for n =1,2,...,

Tion = lnf{t > Nop—1 - X(t) S 8B}
Mng1 = inf{t >non @ X(t) € 831}.

Then, by recurrence, 1, < oo, P;; — a.s. Note that
Yl Pra(m@eiye < 7o)
is L¥-harmonic in B; x § and not identically zero. Therefore by Lemma 4.3,

(4.18) " e)ig%xspgj,e (TBx e < TB1) > 61 >0,

for some 67 > 0. Next we define

Ag = {S(t) = j, for some t € [0,m)}
A, = {S(t) = 4, for some t € [n2n,772n+1)}.

By (4.18) and the strong Markov property,

n
Pr(A5) < (1=6),  PR(()45) < Q-6
k=0

13



Now,

PY(X(t) € D, S(t) = j, for no t > 0)
= P:,i(X(t) € By, S(t)=j, fornot > 0)

Case 2. Suppose © ¢ D and let B = B(z,¢), By and D; be bounded open sets such that
BN\D =@, B, C Dand B\JB; C D;. Let

77/1 =TD,
Mon = {t > Moo + X(t) € OB}
Ming1 = {t > 1hy © X(t) € 0D}

Let 62 > 0 be such that

08 xs T (T@coe < Txae) > 02> 0.
Define
Al = {X(t) € B1,5(t) = j, for some t € [Non—1,72n) }

Then, as in the previous case,

P (X(t)e D, S(t) =4, fornot > 0)=0. O

In view of Lemma 4.4, the following results can be proved the same way as in [3], [4].

Lemma 4.5. The following statements are equivalent.

(i) The switching diffusion is recurrent.

(i) Py, (X(t) € D, for somet >0) =1, for allz € R, i € S and any non-empty open
set D.

(iii) There exists a compact set K C R? such that P;’Yi(X(t) € K, for somet > 0) =1
for all (z,3) € R% x S.

(iv) P;Yi(X(tn) € D, for a sequence t, 1 oo) =1, forallz € R% i € S and any
non-empty open set D.

(v) There ezists a point z € R%, a pair of numbers ro, r1, 0 < 1o < r1, and a point
y € 0B(z,71) such that P}, (T‘g(zvro)c <o0) =1, foranyi€S.

Theorem 4.2. For any Markov policy, the switching diffusion is either recurrent or tran-

sient.

A recurrent switching diffusion admits a unique (up to a constant multiple) o-finite
invariant measure. The switching diffusion is called positive recurrent if it is recurrent and
admits a finite invariant measure.

14



A Markov policy v is called stable if the corresponding process is positive recurrent; the
corresponding invariant probability measure is denoted by 7,.

As is well known from the general theory of dynamical systems, even if LY generates a
positive recurrent diffusion, for each ¢ € S, and the parametric Markov chain is ergodic,
there is no reason to expect that the policy v is stable, i.e., the switching diffusion is positive
recurrent. Indeed, as the following example shows, the hybrid process can be anything from
transient to positive recurrent.

Example 4.1. We first consider a piecewise deterministic system with state dependent Mar-
kovian switching. Let E., E_ C R? be defined as follows:

E+ = {(.CU]_,.’EQ) LI > O}U{CITQ <0,z = 0}
E_= {(:rl,xg) oz < O}U{xg >0,z = 0}.

2 1 -3 1
A“"[—1 QJ’ Al”‘{—1 —3}'

Consider two stable dynamical systems Dy and D; defined by

. AOI, x € E+
Do : r =

Let

Az, z€ F_

and

Az, € E,
Dy z=
Aoz, € E_.

For 6 > 0, let Z be a (parameterized) Markov chain taking values in {0,1} with rate matrix

— -1 1
{16 5}onE+, and [ J 5]onE_

: 3 o6 =4

and consider the dynamical system

D= Dy.
If we define 7 by
Z, re E,
"™Y1-2z zecB.

and D can represented as

15



Define

and Ao (t) = m(To(t)), A (t) = m(T1(t)), where m is the Lebesgue measure on R, . Then,
the solution to D can be expressed as

z(t) = exp(2ho(t) — 3A1(2)) {C"St “Sint} z(0).

sint cost

By the ergodic theory of Markov processes [24, Chap. 1], as t — oo,

M~
! 1462 0 1+62°
Thus,
2 — 362

Therefore, D is stable for 6 < \/g and unstable for 6 > \/g . The matrices Ag, A1 can be
suitably altered to exhibit various other possibilities.

Now let X (t) be defined as dX (t) = A, ;) X (t)dt + odW (t), where W(') is a standard 2-
dimensional Wiener process and oo’ is a 2 X 2 positive definite matrix with constant entries.
Then it is easily shown that the stability (instability) of D implies the positive recurrence
(transience) of X (¢). Note that in this example the drift is unbounded. However, in the
study of recurrence, boundedness of the drift can be replaced by local boundedness.

Remark 4.1. In view of the above example, it is clear that two positive recurrent processes
with suitable switching may result in a transient process. Similarly, the random combination
of two transient processes may give rise to a positive recurrent process. This phenomenon
can be exploited in many practical situations such as fault-tolerant control systems, flexible
manufacturing systems, etc. In a control system with multiple modes, we can trade off
the stability of some (or all) nodes to gain a desired degree of flexibility. Addition of a
few redundant nodes and/or the incorporation of a suitable switching mechanism among
the nodes could result in global stability of the system, thereby gaining flexibility without
sacrificing reliability.

A general criterion for positive recurrence of a switching diffusion is provided by the
following theorem:

Theorem 4.3. Let z,rg,71 be as in Lemma 4.5(v). Then the switching diffusion is positive
recurrent if

(4.19) sup By [T5(s p)e] <00
y€IB(z,71),i€S
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The proof is standard [3]. Note that it may be very difficult to verify (4.19) for general
b, o, A\. One usually verifies (4.19) by constructing a Lyapunov function [3]. For switching
diffusions such a construction seems difficult, since it involves solving a system of ordi-
nary differential equations in closed form. However, we present some criteria for positive
recurrence and discuss some implications.

(C1) There exists a w € C2(R% x S), w > 0 such that
(i) w(z,i) — oo, as ||z — oco.
(i) For each v € Ily, EY,[w(X(t),S5())] and EZ,;|LYw(X(t),S(t))
bounded.
(i) There exists p > 0, ¢ > 0 such that L*w(z,i) < p — quw(z,1), for each u € U.

are locally

(C2) There exists a C? function w : R? x S — R, such that
(ii) There exists a > 0 and € > 0 such that for ||z|| > a, L*w(z,i) < —¢, for all u € U,
i € S, and [[Vw(z,)||? > m™!, where m is the constant in Assumption 3.1 (ii).
(iii) w(z,1) and ||Vw(z,?)|| have polynomial growth.

Theorem 4.4. Under either (C1) or (C2), the process (X(-),S(-)) under any Markov
policy v is positive recurrent. Thus, all Markov policies are stable.

Proof. Under (C1), the result follows from [24, Theorem 25, p. 70]. Under (C2), the tech-

nique of the proof of [6, Lemma 6.2.2, p. 150] can be closely paralleled to draw the desired
conclusion. [l

Remark 4.2. If o = I and b is such that (b(z,i,u),z) < —(d + 1)/2 for all i € S and
llz|| sufficiently large, then w(zx) = ||z||? is a Lyapunov function for the system. We can
construct several examples using this idea. Note that in this case all the diffusion generators
L} give rise to positive recurrent diffusions and have a common Lyapunov function, (i.e.,
one which is independent of ). If all L} have a common Lyapunov function, then switching
does not destabilize the hybrid system. Of course, this is a very strong condition and is
rarely met.

5. Existence of an Optimal Policy. In this section we establish the existence of a
stable, nonrandomized Markov optimal policy under certain conditions. We follow the
methodology developed in [6], [8], [9], [10] for controlled diffusions. For switching diffusions,
similar techniques carry through with some extra effort. Therefore, we present the main
ideas skipping some of the technical details.

Let I1gps and Isarp denote the set of stable Markov and stable nonrandomized Markov
policies respectively. Since we are searching for an optimal policy in Ilgasp, it is natural to
assume that Ilgas is nonempty. Let v € llgp. Then

(5.1) poi= ¥ [ elaiota (s,

€S
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Let
(5.2) p* = inf {p,}.

vEllgar
We assume that p* < co. We now state a condition on the cost function which penalizes
unstable behavior.

(C3) Assume that for each i € S,
(5.3) liminf{ inf ¢(z,%,u)} > p*.

lz{—oco ‘uel

Intuitively, (5.3) penalizes trajectories lying outside the set ;25 {e(z, 1, u)} < p*, forcing
an optimal process to spend a non-vanishing fraction of time in a bounded neighborhood
of this compact set. This behavior results in the stability of every optimal policy. If
¢(z,1,u) = K(||z||) for some increasing function K : Ry — Ry then it can be easily seen
that (5.3) holds. Such cost functions arise quite often in practice. Condition (C3) is referred
to as the near-monotonicity condition [6, Chap. 6].

For v € Hgyp; (or Ilgpp), we define the ergodic occupation measure ufv] € P(RIxSx U)
as
(5.4) plvl{dz, i, du) = n,{(dz, t)v(z,i)(du).
Let

I, = {y,[v] v E HSM}
Iy = {puv] : velsup}-.
The following results can be proved as in [10], [14].

Lemma 5.1. The sets I, Iy are closed, Iy is conver and the set of extreme points of I
lies in Io.

Let v(-) be an arbitrary admissible policy. Define the P(R? x S x U)-valued empirical
process p:(v), for ¢t > 0 by

(5.5) we(v) (A x {i} x B) = %/0 I{X(s) € A, 5(s) = i} v(s)(B) ds,

with A € B(R?), Be B(U) and i € S. Let R* = R¢ |J {oo} be the one-point compactifica-
tion of R%. We identify p;(v) with an element of ’P(ﬁd x 8§ x U) by assigning zero mass at
{0} x § x U. Since ’P(@d x & x U) is compact, {u:(v)}, viewed as a ’P(ﬁd x 8 x U)-valued
process, converges to a sample path dependent compact limit set in ’P(ﬁd x § x U). Note
that any element y € P (Rd x 8§ x U) can be decomposed as

(56)  p(C)= 8,k (CNRY xS xU)) + (1= 6 )u" (C N ({oo} x S x 1)),

for C € %(Ed x S x U). In this decomposition §, € [0,1] is always uniquely defined, and
i € P(R? x S x U) (respectively u” € P({oo} x & x U)) is also unique if &, > 0 (resp.
6, < 1). We may render p/, " unique at all times by imposing an arbitrary fixed choice
thereof when é, = 0, respectively, 1.

Combining the results in [19] with the technique in [6, Lemma 6.1.1, p. 144], we establish
the following lemma.
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Lemma 5.2. If u € P(R?% x S) satisfies
(5.7) 3 / LY f(z, s, i) =0, Y fEH,
ies /R
for some Markov policy v, where H is a dense subset of CZ2(R¢ x S), then p = n,.

Proof. Using the usual approximation procedure we can show that (5.7) is true for all
f e CER?x S). Let (X(-),S(-)) be the process corresponding to the policy v with initial
law u. The law u; of this process, for ¢ > 0, satisfies the Kolmogorov forward equation

¢
S [ twimldni =Y [ fiudei+ 3 [ [ L f itz i) ds,
ies /R? ics /R ies /0 JR
for all f € C2(R?% x S). The uniqueness of the solution to the above equation is established
n [19]. Since p; = u is a solution to (5.7), it follows that p =mn,. O
We disintegrate p’ € P(R? x S x U) as

(5.8) W (dz, i, du) = p*(dz, i)v,(z,1)(du),

where p* is the marginal of ' on R? x S and v, is a version of the regular conditional law
defined p* — a.s. We select an arbitrary version and keep it fixed henceforth. Using the
martingale stability theorem, the following characterization of the limit points of {p;(-)}
can be established as in [6, Lemma 6.1.2].

Lemma 5.3. Outside a set of zero probability, each limit point i of {p:(-)} for which 6, > 0
satisfies p* = 1y, .

We now establish the existence of an optimal policy under (C3). Since the proof closely
follows the steps in [6, Theorem 6.1.1], we only present a brief sketch.

Theorem 5.1. Under (C38), there exists a stable Markov policy which is a.s. optimal.

Proof. Let v, € [Igar be such that
/Edu[vn] Lp*.

We extend plv,] to ’P(ﬁd x 8§ x U) in the usual manner and denote it also by u[v,]. Let
Moo be a limit point of {uv,]} and denote vy, = v, , where v,__ is obtained from po, by
the decomposition in (5.6) and (5.8). Then, for f € CZ2(R? x S),

ieZS/RdL " f(z, i), (dz, 1) :iezs/ﬁdXUL F(,9) plvn)(d, i, du) = 0.

Hence,

> /ﬁd UL“f(a:,z‘)uoo(dx, i,du) = 0.

€S
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Thus, by Lemmas 5.2 and 5.3, p5, = 0y, if 8, > 0. Using (C3), we can demonstrate as
in [6, Lemma 6.1.3] that this is indeed the case. Therefore,

min /Edu[v]:/édu[vw]:p*.

vE€llsnr

Finally, following the technique in {6, Lemma 6.1.3], we can now show that for an arbitrary
policy u,

T
liminf%/ o(X(s), S(s), u(s))ds = o, ass.
0

T—o0
which establishes the optimality of v, in a much stronger sense. [
Theorem 5.2. Under (C3) there exists a v* € gy p which is a.s. optimal.

Proof. We have already established the existence of vy, € IIgps which is a.s. optimal. We
argue as in [7, p. 58]. Embed I; in ’P(ﬁd x & x U) by assigning zero mass at {oo} x S x U.
Let I; denote the closure of I; in ’P(Ed x 8 x U). Then I, is a compact convex set. By
Choquet’s theorem [23], each element u of I; is the barycenter of a probability measure
m supported on the set of extreme points of I;. Now, each extreme point of I; must be
an extreme point of I, since otherwise it would be assigning a strictly positive mass to
{oo} x & x U. If m assigns a strictly positive mass to extreme points of 11, which are not
extreme points of I;, then p must assign a strictly positive probability to {co} x & x U,
which is not true. Thus, m must be supported on the set I{ consisting of the extreme points

of I1. In particular,
/Edu[voo] 2/ (/Edu)m(dy).
I

It follows that there exists a v* € [lgp p such that

[edutonl = [cduty”

and since v, € Ilgas is optimal, the optimality of v* € llgpp follows. O

e
1

We now investigate the existence of an optimal Markov policy under the blanket stability
conditions in (C1)—(C2).

Lemma 5.4. Under either (C1) or (C2), for any admissible policy v € II, the empirical
process {pe(v)} defined in (5.5) is tight.

The proof of Lemma 5.4 closely follows the arguments in the proof of [6, Theorem 6.2.2].
Topologize the space Il as in [6], [14]. We now state another result, the proof of which
closely follows [14, Theorem 3.3, Lemma 4.4].

Lemma 5.5. Under either (C1) or (C2), the sets I, Iy are compact in total variation and
the map v — plv] (as defined in (5.4)) is continuous.
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Theorem 5.3. Under either (C1) or (C2), there exists a v* € Ilgpp which is a.s. optimal.

Proof. First note that under (C1) or (C2), llgpr = IIps and sy p = lIsp. By Lemma 5.5,
there exists a 7 € IIgps such that

vénniélM/Edu[v] = /Edu[ﬁ].

In view of Lemma 5.4 and the decomposition and disintegration of the measure as defined
in (5.6), (5.8), it suffices to confine our attention to IIgas for optimality. Thus, the existence
of an a.s. optimal v* € Tlgpp then follows via Choquet’s theorem as in Theorem 5.2. [

6. Hamilton-Jacobi-Bellman Equations. In this section, we study the HJB equations
and characterize the optimal policy in terms of their solution. We introduce the following
condition:

(C4) The cost function € is bounded, continuous and Lipschitz in its first argument uni-
formly with respect to the third.

We follow the vanishing discount approach, i.e., we derive the HJB equations for the
ergodic criterion by taking the limit of the HJB equations for the discounted criterion as
the discount factor approaches zero. The results and the broad outline of these proofs follow
those of [9]. However, they differ in important technical details.

Let V,(z,1) denote the discounted value function with discount factor o > 0, i.e.,

(6.1) Va(z,i) = inf B U e“"tc(X(t),S(t),u(t))dt], reR? i€S.
v 0
The following result is proved in [14].
Theorem 6.1. Under (C4), V, is the unique solution in C?(R* x S) N Cy(R? x 8) of
(6.2) inIfJ{L“Va(a:, i) +e(z, i, u) } = aVa(z, ).
ue
For i € §, define
G; = {xe RY - 12fUc(:r,z,u ) <p }
(6.3) G:={]G:.
i€S

Observe that by (C3), G is compact.

The following result plays a very crucial role.

Lemma 6.1. Under (C3) and (C4), there exists ag € (0,1) such that if @ € (0, 0],

inf  V,(z,i) is attained on the set G as defined in (6.3).
(z,3)EREIXS

Proof. Let v, € Ilprp be an optimal policy for the discount factor . By the results of [14],
fori €S,

Zbk(x i, Vo, 1) Z)\” (2, v0(z,1))Valz, 7) + (2, 4, va(z, 7))
JjES
d
. T . OV (z,1) ~ N
= 111615 {; bi(z, Z7U)W + j;s)\ij(x,u)Va(x,]) + c(x,z,u)} a.e.
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We let ||z, || — oo in R and fix i € S. For given a, let (X™(-), 5™(-)) be the process under
the policy v, with X™(0) = x, and 5™(0) = i. We can show as in [20] that {X"() = zn}
are tight as C’( [0, 00); Rd)—valued random variables. Dropping to a subsequence and using
Skorohod’s theorem {16, p. 9] we may assume that they are defined on a common probability
space and converge a.s. in C([0,00); R?) to some process Y (-). Hence, IX™()] — oo,
uniformly in ¢ € [0, T] for each T < oo, a.s. By (C3), there exist ¢ > 0 and M > 0, such
that

inf {&(z,4,u)} > p* + 2, if |lz|| >M, VieS.
uelU
We select a constant T}, such that
(p*+2)(1—e ) > p* +¢,

: —aTy € :
le, e < rmy Since

Tq
Va(Zn,1) > E22 | UD e~ e (X (1), S (1), va (X (), S™(1)))dt |,

it follows that

(65) Val@ny i) > 225,

for n sufficiently large. On the other hand, by a standard Tauberian theorem,

(6.6) limsup{aV,(z,i)} < p*, V (z,i) € R x S.

a—0

Fix zo € R? By (6.6), there exists ag = ag(xg) such that Val(zo, ) < p*:%, for all
a < ap. Hence, it follows from (6.5) that if o < g, then inﬂ{d Val(z,1) is attained in a set
€

{zeR?: |z|| < R(ag)}, for alli € S. Let

Toj i= argmin{Va(:E, z)} , (Tayle) = argmin{Va(:L‘a’i, z)} .
z€R4 €S

By (6.2), for a < ag,

(67) gng{E(xa,iy i7 ’LL) + ;Xij (xoz,ia U)Va (xa,iyj) } S aVa(xa,i, 2)
J

and from (6.7),
(6.8) inf {E(ma,ia,u)} < aVu(za,ia), Va<ag.

uwelU

We claim that oV, (z4,ia) < p* for all o > 0. Indeed, for any v € gy,

(6.9)  Valz,i) < EY, [/OOO e~ e(X (1), S(8),v(X(t), S(t)))dt| V(z,i) eRx S.
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Integrating both sides of (6.9) with respect to 7,(dz,i) and using Fubini’s theorem, we

obtain
Z/ (z,1)n(dz, 1) < P
€S o
Hence,
. P~
(6.10) ValZa,la) < —.
o
From (6.8),

< p*
Jrelg{ Loy bos U } >p,
concluding that (z4,i4) € G x S. O

Lemma 6.2. Under (C3) and (C4), the map (x,y,%,5) — |Va(z,i) — Va(y, §)| is bounded
on compact subsets, uniformly in « € (0, ag).

Proof. In view of Lemma 6.1, it suffices to prove that V,(-,-) = Vu(,-) = Va(Za, ia) is
uniformly bounded on compacta. By (6.2) and (6.4),

L*Vy(2,1) = aVy(x,1) — ¢(x, 4, va(z, 1))  ae.

Let R > 0 be large enough so that G C B(0, R). Let (X(),S(-)) be the process under the
policy v, and define 7 = inf{t > 0 : X(t) ¢ B(0,2R)}. Then for z € B(0, R), using the
strong Markov property

Va(z,i) = BV [ /O b T (X (1), S(2), va (X (L), S(t)))dt}

— E¥ [ /0 ’ e~at{a(X(t), S(t), va(X (£), S(£))) — Vi (X (1), S(T))}dt}
+ B3 [Va(X(7), S(7)].
Thus,

|Va(:lt, i) — E;);Va (X(T)a S(T))]

= B /0 Te‘o‘t{E(X(t),S(t),va(X(t),S(t))) —aVa(X(T),S(T))}dt!.

Using (C4) and Lemma 4.2, we deduce that there exists a constant C; (independent of «)
such that

(6.11) |Va(@,9) — Vo (X (7),8(r)| < C1, ¥ (z,i) € BO,R) x S.
We write
(6.12) Via(z,7) — Va(a, ia) = (Va(x,z’) — B Vo (X (1), S(T)))

+ (BRaVa(X(r), 5(7)) — Vala,ia)-
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Let
flz,1) = E;’j’iVa (X(T), S(T)) — Volzayia)-

We observe that f > 0 and L¥>f = 0 in W2P(B(0,2R) x §), 2 < p < oc. Then, by
Theorem 4.1, there exists a constant C (independent of «) such that, in view of (6.11),

F(2,1) < Cof(2ayia) < CiCs, ¥ (2,9) € BOO,R) x S.

Hence,
Val(z,i) = Vo(zay i) < C1(1 4 Cq), V(z,i) € B(O,R) xS. O

Corollary 6.1. For any ¢ > 0 and any compact K C R?, there exists a. € (0, ag] such
that for allz € K, 1 € S and « € (0, ),

(6.13) aVy(z,i) < p* +¢.

Proof. Follows directly from Lemma 6.2 and (6.10). O

Theorem 6.2. Under (C3) and (C4), there ezists a function V € C*(R% x S) and a scalar
p € R such that for some fized ig € S,

(6.14) p < p", V(0,i0) =0, (m’i)glﬂgdst(x,i) > —00

and the pair (V, p) satisfies the HIB equations given by
(6.15) JIGIfU{L V(z,i) +¢(z,i,u)} =p.

Moreover, among all pairs (p, p) € Wio’f(Rd xS) xR, 2 < p < oo, satisfying (6.15), (V, p*),
is the unique one satisfying (6.14).

Proof. Set V(i) = Va(x,1) — Va4(0,40). Then V(0,4ig) = 0 and by (6.2), (6.4),

LYV o (z,1) = aVu(z, 1) — &(z, i, va(x, 1)).

By Corollary 6.1, Lemma 6.2 and the interior estimates for solutions of uniformly elliptic
systems [21, pp. 398-402], we can show using a standard bootstrap argument that for any
R>0,2<p< oo,

sup
O‘G(Ovaa)

Vol - “ < C,
l al") W2.p(B(0,R)xS)

for some constant C. Since WP — WP is compact for p > 1, {V,(-), € (0,0.)} is
sequentially compact in Welo’f. Let o, — 0 in (0,c.). By dropping to a subsequence,
if necessary, let V,, — V in Welo’f for some V. By the Sobolev imbedding theorem, this

convergence is also uniform on compact subsets of R%. Let p be a limit point of c, V., (0, io)
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and hence of @, Vy, (,4) for any (z,7) € R? x S, in view of Lemma 6.2. By (6.13), p < p*.
It can be shown as in [2], [21, p. 420] that

. an(xz — N
Jlel[fj Zbka:zu o +Z)\mxuVQn(x,])+c(3§,z,u)

., :
- 0
——— inf E bi(z,4,u) Viz,7) E /\U z,u)V(x,7) +E(m,i,u)}

in L} strongly. From the above discussion, it follows that V € W.* for any 2 < p < oo,

Loc)

and V' satisfies (6.15) in D" (i.e, in the sense of distributions). By elliptic regularity,
Ve W P2 < p < oo. In turn, by the Sobolev imbedding theorem, V' € C17 (R4 x §), for
0<y< 1 7 arbitrarily close to 1, and hence by (C4), it is easy to see that

d
inf Z w—HLZAU(x WV (z, j) + ¢z, i, u)

uelU oz
k JjES

is in C%7(R?% x S). By elliptic regularity [15, p. 287] applied to (6.15), we conclude that
V e C*7(R% x S). Clearly, V(0,49) = 0. It suffices to show that V is bounded below. For
any z € R, i € S,
(6.16) V(z,i) = lim [Van(x,i)—Van(O,io)]

> hm [Van (ZTan, 1) — Va, (0, zo)] + lim [Van(xan,ian) —Va, (;can,z'):]‘
Using Lemmas 6.1 and 6.2, it follows from (6.16) that for each i € S,

inf  V(z,i)>—-o00
(2,5)ERIXS

and the proof of the first part of the theorem is complete. The second assertion can be
shown by following the methodology in [9]. O

Further, based on Lemmas 6.1, 6.2 and Theorem 4.1, the following theorem can be proved
using the techniques presented in [9]. We therefore skip the proof.

Theorem 6.3. Assume (C3) and (C4). Let v* € lprp be such that for each i

d .
V(2i) s o
(6.17) Jrelg Z (z,1,u) + Z Aij(z,w)V(z, j) + ez, i,u)
k=1 JjES
BV (x,1)

ac e Oz Z)‘w x v*(z,14) V(%j) +¢(z,4,v* (x, z)) a.e.

M&

Then v* € llgmp. The scalar p in (6.15) equals p* and v* is a.s. optimal. Moreover,
v € Ugmp s a.s. optimal if and only if it satisfies (6.17).

Remark ¢.1. The boundedness condition on the cost function & may be relaxed. For un-
bounded ¢ we can use a suitable truncation procedure to approximate & by a sequence of
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bounded functions. Then the arguments in [9, p. 202] can be paralleled to establish the
results in Theorems 6.2-6.3.

We now study the HJB equation under (C1) and (C4). Recall that under (C1), IIn, =
snr.

Lemma 6.3. Let w satisfy (C1). Then for any v € Ug,
. N (dp. i .
(i) Z/Rd w(z, )Ny (dz, 1) < oo
1€S )
(i) lim — 2, [w(X (1), 5(2))] = 0.
Proof. Let R > 0 and 7x the exit time of X (¢) from B(0, R). Then by Ito’s formula

EY, [w(X(t Arr), S(EA TR))} — w(z,i) = B, Uomm Lrw(X(s), 5(3))613}

Letting R — oo, we have

B [w(X (), S(®)] - w(e,s) = B2, { /0 Lhw(X(s), 5(5))(13}

Therefore, by using (C1), we have

iE;,i [w(X(1),5(t))] < p—qEy,[w(X(t),S1))].

dt
Then by Gronwall’s inequality,
(6.18) BY [w(X(t),S®)] < g +w(z, i)e .

Both (i) and (ii) follow directly from (6.18). O

Lemma 6.4. Assume (C1) holds. Let a > 0 be such that,
LYw(z,1) < -1, forall |z||>a, uelU,i€S.
If
(6.19) To=inf{t >0 : |X(®)| < a},
then, for allv € Iy, ||z]| > a and i € S,
(6.20) EY [ra] < w(z,i).
Proof. Let v € II5;. Choose R > 0 such that a < ||z|| < R. Let

TR =inf{t >0 : X(t) ¢ B(0,R)\ B(0,a)}.
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Then by Ito’s formula

E}, {w(X(t ATg), S(EA Tg))} = w(z,i) + E; [/OMT;{ Lw(X(s),S(s))ds]|.

Therefore,

B2 [w(X(EATh), S(t A TR))| < wle,i) - B2, [t ATh].
Thus,
(6.21) EY [t ATR] € w(z,i).

Letting first ¢ — oo and then R — oo, invoking Fatou’s lemma at each step, we obtain
(6.20). O

Theorem 6.4. Under (C1) and (C4), the HIB equation (6.15) admits a unique solution
(V,p) in the class C*(R? x S) (N O(w), satisfying V(0,i5) = 0 for some fized ig € S.

Proof. Let v* € llgpp be a.s. optimal. The existence of such a v* is guaranteed by
Theorem 5.3. Let

K = sup{e(z,i,u)}

z,1,U

Ky, = sup /Edu[v].

vEllsmp

We select an arbitrary sequence of smooth functions ¥, : R* — [0, K1 + 4K5], n > 1, that
are zero on B(0,n) and equal to K7 + 4K> on the complement of B(0,n + 1), and define

cin(x,i,u) = %[E(a:, i,u) + wn(x)]
con(x,yi,u) = %[wn(:c) —¢(x, 1, u)]
Then for a sufficiently large n, c¢1,, and cap, both satisfy the penalizing condition (C3). We

select one such term of the sequence from now on and drop the subscript n for notational
convenience. Let (X (), S ()) be the process under the policy v*. For a > 0, we define

Vo (2,i) = EY, /O " et (X(2), S(t), v* (X (2), S(t)))dt] :

Vaz(z,1) = BY, ~/000 e er (X (t), S(t), v (X (), S(t)))dt],

Valz,i) = E2, /0 b e ™ T(X (1), S(t), v* (X (t), S(t)))dt} :

Then we can rﬁodify the arguments in the proof of Lemma 6.2 to conclude that for a fixed
o € S, (Vavl(x,i) — Va1 (0, z'o)) and (Va’2(l',’l:) — V4, 2(0, ig)) are bounded on compacta
uniformly in « € (0, ap], for some ap > 0. Hence,

Valz,1) = Vy(z,1) — Vo(0,4)
= [Va,1(z,7) = V,1(0,0)] = [Va2(z, 1) — Vo 2(0, )]
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is bounded on compact sets, uniformly in « € (0, ap]. Arguing as in the proof of Theorem 6.2
we conclude that V ,(z,4) — V(z,1), as @ — 0, uniformly on compacta and in WZ}'S(R‘Z xS),
for any p € [2,00), and that the limit V' satisfies

LYV V(x,4) + ez, i,v*(x,1)) = p*,

with V(0,79) = 0. Using the strong Markov property, relative to the stopping time 7, in
(6.19), we obtain

Valz,i) = EBY, UT e ™ E(X (1), S(t), v (X (t), S(t)] — aVa(0,40))dt
0
B e Vo (X (ra), S(r))] -
Hence, by Lemma 6.4, for « € (0, o] and |jz|| > a,

Valz,)| < C1 + C2EY, 1]
< 01 + CZw(xv 7’)7

where C, C; are positive constants independent of «. Passing to the limit as o — 0, it
follows that V is in the class O(w). Next we let v € IIsap be such that for each i € S,

d
- . 8V (z,1) N )
DBkl vlz, i) =5 == ZAU z,v(z,1))V (2, §) + e(z, 1, v(z, )

d .
- . OV (z, ~ N
= Jof {kE_li B, i) 22D 4 SR, ) V(e ) + o, z,u>}

O, jes
Suppose that for some ¢’ € S, there exist § > 0, such that the set
D= {ac eR? : LV (x,i) < p* —¢(z, 7, v(z,i)) — 6}
has positive Lebesgue measure. By Ito’s formula
B2 [V(X(®), S©)] = Vizi) = B2, { / LV (X(s), S(s))ds}.
This is justified because V is O(w). Therefore,
B2 V(X(1),5()] - V(i) < B, { /0 [t (X (), 5(), (), 5(3»)](4

—6E§’i{/0tI{X( €D,S(s) =i }ds}

Dividing by ¢, letting ¢ — oo and using Lemma 6.3, we have

po < p* = 6my (D x {i'}).
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By Lemma 4.1, n,(D x {i'}) > 0. Hence, p, < p* which contradicts the optimality of v*.
Thus, for each i € S,

(6.24) inf, {L"V (z,i) + e(z,i,u)} = p~ ae.

Similar arguments as in the proof of Theorem 6.2 establish that V € C?7(R¢ x S), where
0 < v < 1, «v arbitrarily close to 1. We now proceed to show uniqueness. Let (V') p’) be
another solution of (6.15) in the desired class satisfying V'(0,4) = 0. Using Ito’s formula
and Lemma 6.3, it again follows that p’ = p*. Therefore,

LY (V'(z,4) = V(z,i)) > 0.
Let (X(t),S(t)) be the process governed by v* and with initial law 7,-. Then,
M(t) = V'(X(t),S() — V(X(t),S(t))

is a submartingale satisfying

sup BV |M ()] < C} + C} Z/ w(z, 1)y« (dz, i) < oo,
t20 ics VR

by Lemma 6.3, where C7, (3 are suitable constants. Here we are using the fact that both V'
and V' are of O(w). By the submartingale convergence theorem, M (t) converges a.s. Since
(X (¢),S(t)) is ergodic and irreducible under v*, it follows that V'(z,1) — V(z,%) must be
constant a.s. This constant must be zero, since V'(0,49) — V(0,49) = 0. O

Remark 6.2. For the stable case we have carried out our analysis under the Lyapunov
condition (C1). Analogous results can be derived under the condition (C2).

7. Conclusions. We have analyzed the optimal control of switching diffusions with a
pathwise average cost criterion. Under certain conditions we have established the existence
of a stable, nonrandomized Markov policy which is a.s. optimal in the class of all admis-
sible policies. Also, we demonstrate the existence of a unique solution to the associated
HJB equations in C?, under varying conditions, and the optimal policy is characterized as
a minimizing selector of the Hamiltonian. We have applied our results to a manufactur-
ing model of Bielecki and Kumar and have exhibited that our methodology affords both
greater generality and ease of solution. By studying the recurrence and ergodic properties of
switching diffusions we have also obtained two new results in p.d.e. viz. a strong maximum
principle and Harnack’s inequality for a weakly coupled elliptic system.

Acknowledgment. The authors wish to thank Prof. S.R.S. Varadhan for explaining to us
the work of Krylov and Safonov. The Appendix in this paper is both inspired by and based
in part on his notes on the proof of Harnack’s inequality for a uniformly elliptic operator.
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Appendix. This Appendix is devoted to the proof of Theorem 4.1.
Given a domain 2 € R%, a real function u defined on 2 x S is viewed as a vector valued
function w = (uy,...,un), with each component u; being a real function on 2.

Consider a second order operator L defined by (note that Ly is different from the operator
in (3.7)):

(Lu)p(z) := Lpug(z) + Z cki(z)u; (), keS
jES

7k
(Al) d 82 d P
Ly := Z afj(w)@maaa + be(x)% - chj(x).
3,j=1 Lt = * ]i‘z‘
J

Let m,77,% and € be given positive constants, the last depending on the choice of a
bounded domain 2. We denote by £ = £(m,™,7,¢p) the class of all such operators L,
with coefficients afj(-) € COH(R?) and b¥(.), ck;(+) € L®(RY), satisfying:

d
(A2) mll* < Y afi(@)6¢ <mC)?, forall @,(eRY keES.

ig=1
(A.3) ]]afj(:x) — afj(y)ﬂoo <FHllz—yl|l, foral z,y¢€ RY, i, j€e {1, .. ,d}, kesS.
(A4) bl <™, D llekjlloo < and cx; >0, forall i€ {1,...,d}, jkeS.
j€S
7k
(A.5) The matrix C(z;e0) = [ci;(x) : ¢;j(z) > eq] is irreducible at each z € 2.

We denote by 4l the class of all nonnegative functions u € Wfa’g(ﬂ x S)YNC (2 x S),
satisfying Lu = 0 in {2, for some L € £. If £ € R, then u > £ is to be interpreted as u; > &,
foralli € S, and if € = (&1,...,6ny) € RN thenu > € <= u; > &, foralli € S. For
better clarity, we denote all RV-valued quantities by a bold letter. Also operations such as
‘inf’ on R™-valued functions are meant to be componentwise. If I" is a closed subset of {2
we define, for z € {2 and £ € Rf,

VU, (U, ;€)= inf {u(z): u>€onT}.

ucilp

Deviating from the usual vector space notation, if D is a cube in R% and § > 0, 6D
denotes the cube which is concentric to D and whose edges are ¢ times as long. For a
measurable set A C R?, |A| denotes the Lebesgue measure of A, while B(A) and L4(A)
denote the sets of real-valued, measurable functions on A such that

I fllBay == ess sup |[f(z)]| < o0, V fe€B(A)
z€
and

14
1llan = ( / If(x)ldd:c) <o, VfeLYA).
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We use quite frequently the following comparison principle, which can be viewed as a
weaker version of the maximum principle in that it holds even without condition (A.5): If
e, Y € Wgzo’f(ﬂ x SYNCYN x S) satisty L < L in 2 and ¢ > 1 on 042, then ¢ > 1
in £2. The same comparison principle holds for ¢, € WZ;?(Q) N C°(£2) relative to the set
of operators { L }res as defined in (A.1).

We start with a measure theoretic result, announced in {18].

Lemma A.1. Let K C R? be a cube, I' C K a closed subset and 0 < a < 1. Define

Q= {Q : Q is a subcube of K and |Q\ '] > aiQ|}

r=J@Benk).

QeL
Then either [' = K. or || > i

Proof. Tt |I'| > o|K], then K € Q@ and I' = K. So we assume |I'| < /K| or equivalently,
K ¢ Q. We subdivide K into 2¢ congruent subcubes with disjoint interiors. We select the
ones in Q, while the remaining ones are similarly subdivided and the process is repeated
indefinitely. Let Qg be the collection thus obtained and with @ denoting the ancestor of
@, we define

QRELo

Clearly, @ C 3Q ) K; hence, ' > I. Note that, discarding repetitions, T can be represented
as a disjoint union of cubes Q which are not in @. Therefore, each member Q of this union
satisfies |Q (N I'] < @|Q|, and by o-additivity we obtain

IO < all| < o|T).

By the regularity properties of the Lebesgue measure lf N I'| = |I'| and the proof is com-
plete. [

Next we state without proof a variant of the weak maximum principle of A. D. Aleksan-
droff.

Lemma A.2. There exist constants C1 > 0 and ko € (0,1] such that if D C R? is any
cube of volume |D| < ko and p € W2(D)NCY(D), f € LHD) satisfy Ly > f in D and

Loc

©=0 on dD, for some L € £, then
sup {p(e)} < Ca| D" fllain -
z€

For the remainder of this Appendix, D will denote an open cube in R¢ of volume not
exceeding the constant kg in Lemma A.2.
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Lemma A.3. There exist constants By > 0 and oy < 1 such that, if I' is a closed subset
of some cube D C R?, satisfying |I'| > ap|D|, then

inf @, (Up,I3€) 2 6o, VEERY.
zE3F

Proof. Observe that if u € 3 p, then each component uy satisfies Lyur < 0 in D. Define
¢, 0" € Wad(D)NCO(D) by:

Loc

Ly () = —Ip(z), Lko"(z)=—Ipe(a), in D

and ¢'(z) =" (z) =0, on 0D .
Then ¢ := ¢’ + ¢ satisfies Ly = —1 in D and ¢ = 0 on 0D. Without loss of generality,
suppose D is centered at the origin and consider the function
d
() := [[(ID** - 4a7).

i=1
Note that 1 = 0 on 8D and ¥ > 0 in D. In addition, there exists a positive constant '
such that

inf 9(z) > Co| DI Letpllppy, Y LEEL.
Therefore, by the comparison principle,

(A.6) o) ¥(a)

— L > (Cy|D|*e, vzelD.
| Ll B D) 2 D] 3

Using Lemma A.2, we obtain
Ya
o < DT = oyl (15)
(A.T) y
o' < ClD e = CyfpPe (1 - )
By (A.6) and (A.7),

/ Cy| D% 2y _ 101 7 .
¢'(x) Z Co| DI = C1|D| (1—,—5) , VzeiD.

On the other hand, since Ly’ = 0 in D\ I" and ¢’ = 0 on 0D, the comparison principle
yields

(A.8) zlgn%fp{uk(x)} > & " T
cs (i)
Selecting g to satisfy
o > 11— (%)d,
(A.8) yields
1€n%fD{uk(:c) > 621—205—1’3
Hence, the claim follows with Gy = 2%?1- 0
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Lemma A.4. For each 6 > 0, there exists a constant ki > 0 such that if Q C (1 —6)D is
a subcube of an open cube D C R%, then

Proof. Let B(r) C R%, denote the ball of radius r centered at the origin. We claim that
there exists a constant mg > 0, such that if » < 1, then

(A.9) ot O, (Upry, B(5);€) 2mo€, VEERY.

In order to establish (A.9) we use the function
o(z) = exp{a, (1—%‘—2—)}-—1, = %(16(1—{—2) z € B(r),

which satisfies Lyp(z) > 0 for all L € £, provided ||z|| > § and r» < 1. By the comparison
principle, (A.9) holds with

oslg

-1
-1

It follows that if B(r) is centered at y, and z is an arbitrary point in D such that the
distance between 0D and the line segment joining = and y is at least r, then

m0:

[
@o‘

(A10) @ (4p,B(5):€) 2 (mo)'e, with ¢=[i=gu=r] weeR).

Choosing 7 = min{Z2, £}|Q|"/2 and applying (A.10), an easy calculation shows that the
result holds with

£(8)

k) = mi®, e(&)::[ 6vd ] O

min{1, 6}

Lemma A.5. Suppose that there exist constants € and 6, such that if I' C (1 —6)D is a
closed subset of some cube D and € € Rf, then

inf @, (Up, I;€) > €€, whenever |I'|>6|D|.
TEF iD

Then there exists a constant ks > 0 such that

1nf W, (Up, I €) > cks€, whenever |I'| > aob|D],

z€L 3D
where og s the constant in Lemma A.3.

Proof. Suppose |I'] > «of|D| and let y € I', with I" as defined in Lemma A.1 corresponding
to a = ap and K = (1—§)D. Then there exists a subcube @ C K such that |’ Q| = a|Q|
and y € 3Q () K. We use the identities,

(A.11) @, (U5, I3€) > O (81, T inf @, (84p, T3€))

yel’
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and

(A.12) o, (Up, I;€) >, (uD, 1Q; inf @.(4p, T 5))

ze3

> 9, (4p,5Q; inf ¥.(10,INQ5E)).

ZGgQ

From Lemma A.3, we have

(A.13) mf v, (U, I'NQ;E) > Bk

ZG

From Lemma A.4, we obtain Wy(ﬂp,gQ;ﬁgﬁ) > Bokg€, for all y € 3Q( K. Hence,
combining (A.12) and (A.13) yields

(A.14) inf @, (Up, ;&) > ks€, with ks := fokj .
yel’

From Lemma A.1, || > a%[]"] > 0|D|. Therefore, by hypothesis,

inf @, (LlD,F kéﬁ) > cks§,

‘7"63
which along with (A.11) and (A.14) yield the desired result. [
Theorem A.1. The following estimates hold:
(i) Let D be a cube and I' C (1 — 6)D a closed subset. Then for all € € RY,

ir| o(6) o log ks
(A.15) mlen_f w, (Up, I €) > o (|D|> £, p(6) = fog g

where the constants ag, By and ks are as in Lemma A.8 and Lemma A.5.
(ii) There exists a real function F' defined in [0,1], with F(0) > 0, if 6 > 0 such that if
I' C D is a closed subset of a cube D, then

: . || N
(A.16) Jnt 0, (8p, T€) > F (m) £, VeEeRY.

Proof. Part (i) is direct consequence of Lemmas A.3 and A.5. For part (ii), choose § = Z}fl_gf
Then,

I'Na=-8bp|_ |I]

(A.17) D] |D|

~(1-(1-8)%)> = —dé> .
Since
Wm(uDaF§£) > Wx(uDaFﬂ(l - 5)D7£) )
the bound in (A.16) follows from (A.15) and (A.17), with
s
F(a) - ﬂo (3740_)9(&1) O

Definition A.1. If A C £2 we define the oscillation of a function u € C°(£2 x S) over A by

osc{u; A) = max sup{u;c z)} — min inf {ur(z)} .

The oscillation of a function in C°(§2) is defined in the usual manner.
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Theorem A.2. If D is a cube, u € Mp and q = F(%), with F(-) as defined in Theorem A.1
(1), then
osc(ug; 3D) < (1 — %) osc(u; D), VkeS.

Proof. Let
M= sup {ux(z)}, M?* = max My
mG%D kes
m¢ = inf {u(z m® := min m}
k mE%D{ k( )} 3 Py k

and M® m? be the corresponding quantities relative to D. Consider the sets
Fl(k) = {:1: €D : ulz) < %@}

= {seD s w(w) > L),

Suppose |F2(k)| > %[D[ Since u—m? is nonnegative and uj —mb > Mﬁg—m—b- in Fz(k), applying
Theorem A.1 (ii), yields

‘v’xE%D.

Consequently, m§ > mb + qM b;mb and since M® < M?®, we obtain
(A.18) M —mf < MY —mb — ¢M2om® < (1 4)(MP —mb).

On the other hand, if lFl(k)[ > 1|D|, then using the nonnegative function M® — u, we
similarly obtain

(A.19) Mg —m®* < (1-£)(M° —m?),
and the result follows by (A.18)-(A.19). O

Theorem A.3. There exists a constant My > 0 such that, for any u € Mp,

mseu%pD{uz(a:)} < M, max zienng {uk(2)}, VieS.

Proof. Let By be as given in Lemma A.3 and with p(-) and g as in (A.15) and Theorem A.2,
respectively, define

1 (1-12)
(A.20) pi= and g := 4
dp(3) (1-1)
We claim that the value of the constant M; may be chosen as
L,
dgo | 27N 7P
(A.21) M, = 2o YT Y .
aBo 2((10 - 1)
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We argue by contradiction. Suppose u € 4p violates this bound and let {z),... z(M)}
denote the points in é—ﬁ where the minima of u are attained, i.e.,

inf {ux(z)} = g (), keS.

wG%D

Without loss of generality, suppose that rlilag{{uk(x(k))} =1 ('u, can always be scaled to
€

satisfy this) and that for some yo € éD and ko € S, uk,(v0) = M > aM;, with o > 1.
Using the estimate for the growth of the oscillation of u in Theorem A.2, we will show that
u has to be unbounded in %D. By hypothesis, % exceeds M in (A.21) and in order to
facilitate the construction which follows we choose to express this as

(A2 graw(e (L)L

nepo q0

For £ > 0, define

D = {zelD: wu(z)2¢}, DO=JDP.
kes

If1, € ]Rf stands for the vector whose k-th component is equal to 1 and the others 0, then
(A.23) u(z®) > T (Up, D5 61,),  VEeS,

while, on the other hand, Theorem A.1 yields,

D]
D]

e(%)
(A24) Wm(k) (Llepl(f))glk) Z ﬂo ( ) glk 3 VkeS.

By (A.23)-(A.24) and using (A.20), we obtain the estimate

© uk(z®)\ 1\
(A.25) 1D<€>lszwf|s2( ) |D|_<_N(——) DI, veso.

kes kes ¢Bo

Choosing ¢ = %/I—, we have by (A.25)

4\
{x €3D: rggg{{uk(w)} > %—}I <N (qﬂ0M> |D|.

Hence, if Qo is a cube of volume |Qo| = N (-3% )pdlDl centered at yo, then

qBoM
(A.26) 0sc(uky; Qo) > (1 — 4)M .
By Theorem A.2, we obtain from (A.26)
(A.27) osc(u; 3Qg) > 8 : é%M =qoM .
2
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Since u is nonnegative, (A.27) implies that there exists y(!) € 3Qo and k; € S such that
e, () = qoM -

Note that (A.22) implies that 3Q)y C lD Therefore, we can repeat the argument, now
choosing & = qo in (A. 25) and a cube @y of volume N( — —da ) dID| centered at y(!) to
conclude that there exists y(@ € 3Q1 and ko € S such that ug, (y (2)) > g2 M. Inductively,
we can construct a sequence {y( s Ky Qn} o satisfying, for all n =0,1,..

°

¥y =y e€iDNQ, ¥™ €QnN3Qn-1,
(A28) |Qn|1/d _ Nl/d(i)np( 4a )P|D|1/d

90 qBoM

)

The inequality in (A.22) guarantees that y(™) € iD, for all n. But (A.28) implies that u is
unbounded in %D which is a contradiction. [

Remark A.1. By the comparison principle, Lemmas A.3-A.5 and Theorem A.1 clearly hold
unmodified for the class of Li-superharmonic, nonnegative functions, i.e., functions u €

szog( N CY(D), satisfying Lyu < 0 in D, for some k € S and L € £. This fact will be
used in the next result.

Lemma A.6. Let L € £, k € § and suppose @ is a solution to the Dirichlet problem
Lip = —f in a cube D C R?, with ¢ = 0 on 0D, with f satisfying
0<f(z)<M, VYzeD and Wfllap > €>0,

for some constants M and €. Then there exists a constant C' = C'(M, e, m,m,7) such that

i > .
gléfD{sO(w)} >C

Proof. First note that the Dirichlet problem as defined has a unique strong solution ¢ €

eoc( YN CO(D), for all p € [d,00). We argue by contradiction. Suppose there exists a
sequence of operators {L(")} ; C £ and a sequence of functions { f ")} 1+ in accord
with the hypotheses of the Lemma, such that the corresponding solutions {(p(")}:ozl of
Lgcn)go(") = — £ gatisfy

1
z1€nlfD{<,0 } < ol n=12,...

Thus, by Theorem A.1,

e otz 1< () o



with p as defined in (A.20). Since the sequence ¢(™) is bounded in L>(D) (by Lemma A.2),
it follows that (™ — 0 in LP(D), as n — oo, for all p € [1,00). Let D’ = 6D, with § < 1,
be a subcube of D, and let || - [|2.p.p denote the standard norm of W*?(D’). We use the
well known estimate

o™z < C” (6™ i + 15 i)

for some constant C” = C"(|D|,p,6,d, m,m,7), to conclude that the first and second
derivatives of (™ converge weakly to 0 in LP(D’), for all p € [1,00). In turn, since
WO2 P(D') — WO1 P(D') is compact for p > d, using the standard approximation argument
we deduce that %’%g—) converges in LP(D’) strongly, for all ¢ = 1,...,d. Also, since the
second-order coefficients of Lgﬁ") are uniformly Lipschitz, we can extract a subsequence,
along which they converge uniformly. Combining all the previous arguments, we deduce
that the sequence {Lgc")go(”)} converges weakly to 0 in LP(D'), p € [1,00). On the other

La
hand, if we choose § > (1 — W) , an easy calculation yields,

™ (z)dz > n=12,...,
DI

€
_2‘ )
resulting in a contradiction. 0

We pause to note that (A.5) has not been utilized in any of the results obtained thus
far. It will be used in the next result to provide the necessary ‘coupling’ between distinct
components of the harmonic function.

Lemma A.7. For each cube D C R? there exists a constant My > 0 such that, for any
u € p
inf {u;(z)} < M, inf {u;(z)}, Vi,jeS.

z€FD

zetD

Proof. Let €p be the constant in hypothesis (A.5). Define a collection of functions
{pij(z), i, €S} C WZZO’S(%D) N C°(3D), relative to some L € £, by

Lipij(z) = —cij(z) in %D, and ;(z) =0 on 6(%D) , if i#£7

(A.29) .
wij(z) =0, it 1=7,

and let #(z), C(x) denote the matrices with elements {¢;;(z)} and {ci;(z)}, ;> Tespec-

tively. By (A.4), there exists a constant irreducible matrix Cp C RV*¥  with elements
equal to 0 or 1 such that

(A.30) {zeiD : C@) 2epCh}| 2 whwlDl.
It follows, by (A.29), (A.30) and Lemma A.6 that there exists a constant 7, > 0, such that

(A.31) &(z) > ) Cp, VzeiD,

39



and (A.31) holds relative to any L € £ used to generate ¢;;. Therefore, if u € {Up and we

define w := inf u(z) and v’ = inf u(z), it is a direct consequence of the comparison
:EE?;D €3

principle that

(A.32) u(z) > ®(z)u’, VzeiD.

On the other hand, by Theorem A.1,

(A.33) u > F(

Ju.

K

By (A.31)-(A.33),
u(z) > epF(g3)Cou, VzegD,

which yields u > €', F (9%)0 puw. In turn, the irreducibility of Cp implies that
N-1
w> (pF(d)) w, VijeS. O

Combining Theorem A.3 and Lemma A.7 and letting M := M, M, we have:

Theorem A.4. For each cube D C R%, |D| < kg there ezists a constant M > 0 such that,
for any u € Mp

ui(y) < Mu;(z), Vx,yEéD, Vijes.

Theorem 4.1 easily follows from Theorem A.4 by covering the domain {2 with a collection
of congruent cubes D of suitable size. For an elegant exposition of this technique see (11,
pg. 153]. The existence of a constant €, > 0 satisfying (A.5) is guaranteed by the continuity
and irreducibility conditions in Assumption 3.1 (i) and (iii), along with the compactness of
U. Concerning (A.3), (A.4) and the upper bound in (A.2), observe that for each bounded
domain {2, Assumption 3.1 (i) implies the existence of constants 7 and 7 satisfying all these
conditions in 2. This suffices for our purposes.
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